Exam 2-5 October 2017

Instructions

- You have until the end of the class period to complete this exam.
- You may not use a calculator.
- You may not consult any other outside materials (e.g. notes, textbooks, homework).
- Show all your work. Your answers should be legible and clearly labeled. It is your responsibility to make sure that I understand what you are doing. You will be awarded partial credit if your work merits it.
- Keep this booklet intact.
- Do not discuss the contents of this exam with any midshipmen until it is returned to you.

Problem	Weight	Score
1	1/2	
2	1/2	
3	1	
4	1	
5	1/2	
6	1/2	
7	1/2	
8	1/2	
9	1	
10	1	
11	1	
12	1/2	
13	1/2	
14	1/2	
15	1/2	
Total		/ 100

For Problems 1-3, suppose the position of an airplane at time t is given by the vector function

$$
\vec{r}(t)=\left\langle\frac{1}{3} t^{3}, 5, \frac{1}{2} t^{2}\right\rangle
$$

Problem 1. Find the velocity of the airplane at time t.

Problem 2. Find the speed of the airplane when $t=2$.

Problem 3. Find the length of the airplane's path between $t=0$ and $t=1$.

Problem 4. Find parametric equations for the line tangent to the curve defined by the vector function

$$
\vec{r}(t)=\left\langle 1+\ln (t+1), 2 e^{t}, t \cos 2 t\right\rangle
$$

at $(1,2,0)$.

For Problems 5-7, consider the following setting.
Eli Manning throws a football at an angle of 32° to the horizontal. It leaves his hand 2 m above the ground. The football lands 40 m from him. Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

For these problems, you do not need to simplify any trigonometric expressions.
Problem 5. Set up a system of equations with two variables (v_{0}, t) whose solution gives you the time t at which the ball lands, and the initial speed of the ball v_{0}. Do not solve the equations.

Suppose the solution to the equations you set up in part 5 is $v_{0}=20, t=2$.
Problem 6. How far is the ball horizontally from Eli 0.5 s after he threw the ball?

Problem 7. How far is the ball vertically from Eli 1 s after he threw the ball?

For Problems 8-11, consider the contour map for a function f shown below.

Problem 8. Estimate $f(3,8)$.

Problem 9. Is $f_{x}(3,8)$ positive, negative, or zero? Explain why.

Problem 10. Is $f_{y}(3,8)$ positive, negative, or zero? Explain why.

Problem 11. Is $f_{y y}(3,8)$ positive, negative, or zero? Explain why.

Problem 12. Let $f(x, y)=x \sin x y$. Find f_{x}.

Problem 13. Let $f(x, y)=\ln \left(5 x^{2} y+x y^{2}\right)$. Find f_{y}.

Problem 14. Let $f(x, y)=\frac{x}{(x+y)^{2}}$. Find $f_{y y}$.

Problem 15. Let $f(x, y)=\left(2 x^{3}+y^{2}\right)^{4}$. Find $f_{x y}$.

